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Context

In analysis of spectra in typical particle physics experiment, techniques of
covariance are often employed.

The intention of these notes is to provide the mathematical tools that go into
such analysis without the heaviness of a course in the subject.

Most of this is known, but it is useful to have the basic structure for reference.

We will develop these tools with an eye towards a reactor neutrino experiment
such as PROSPECT or beam experiment such as DUNE

In such an experiment, a source (which has some parameters) produces a
spectrum which is detected in multiple detectors arranged at several different
distances. Each detector is characterized by a set of parameters such as
position, size, resolution, etc. Lastly, there are a set of parameters that are
independent of the detector such as the interaction cross section.

The spectra observed in each detector must be analyzed with full
understanding of these dependences.



Characteristic function method

A characteristic function 1s a Fourier transtform of a probability density function (PDF).
It makes combinations of probabilities easier to calculate and understand.
X 1s a continuous random variable with probability density function P(x) then the

characteristic function is

O, (k)= ]i P(x)e™ dx

This allows easy way to generate moments of the PDF.
@(k=0)=1 since it 1s the integral of the PDF.

If X and Y are two random variables and z = f(x,y) then the Characteristic function for Z is

0, (k)= [[ ¥V P(x)dx Q(y)dy

To get the moments of f(x,y) often it 1s not necessary to evaluate the integral.

eg. f(x,y) =x+y = ¢,(k)=¢,(k)p,(k) ....leave it for you to prove this
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Obviously we can expand

0, (k)=1+)

n=1 n‘

ml’l

(ik)" +O(k™)

where m_ are moments of the PDF about 0. If we take the logarithm of

the characteristic function then we can expand it. This is called cumulant generator.

N o1 N
Log(@ (k)= 2, (k)" + O(K")

The A are called the cumulants of the PDF. Cumulants and moments are related.
It 1s easier to work with cumulants sometimes.

m, = A, the mean

m, =A,+ Am, A, is the variance

m,=A,+2A,m +Am, A, = <(X - m1)3> or third central moment

Higher order cumulants do not have simple explanations

Imagine X, Y are independent random numbers then obviously

Logloy,y (1)1 = Logley ()]+ Logl@, (¢)]

With a little thought one concludes that: the cumulants of the PDF of (X+Y)

are the sum of the cumulants for X and Y. 1.e. the mean of X+Y is the sum of the
means of X and Y. The variance of X+Y is the sum of the variance of X and Y, and

so on for any order of cumulants.



Gaussian PDF and its characteristic func.

By definition

- 1
_;Eaij('xi_ui)(xj_;uj)
P(x,,%y,....,x,)= Ne *

Gaussian multivariate PDF with a mean of y; for all x,.

_1
N = (Det[27mlj]) 2 is the normalization.

The matrix a; has to be positive definite.

Define b;; = Inversela;] — this 1s the covariance matrix.

let X ={x,,x,,...} and K = {k,,k,,...} for short-hand.

n

. 5]
lz_:k]u] —Z:Ebl]klk] ' . . .
e’ e ™ 1s the characteristic function

¢(k1’k2"”’kn): J dXP(X)elKX

The Fourier transform of a Gaussian yields a "Gaussian function" with b, =[a, ]



more about Gaussian

Start with the characteristic function of a multi-variate Gaussian

K- z{kjuj Zzbl]klk]
o(K)=e’”~ e "

The moments of the probability density can be obtained by differentiation
@(K =0)=1 since it 1s the integral of the PDF.

122 (K =0)=(x)=1

dk,
81@- ak] o 2 / e ! i i
. Qotant.ta, (k)
General rule for any moment is {x ' x22 .. x% ) = (—i)H"%2""%
’ ) = Ok Ok ...k |

The cumulant generator for a Gaussian shows

Loglp(k, k, ...k >l—szu ——Zbu k,

l<]

that the Gaussian PDF does not have third or higher order cumulants.



Some simple rules and bivariate Gaussian.
If X and Y are two random variables and z= f(x,y) then the Characteristic function for Z is
0, (k)= [[ " P(x)dx Q(y)dy

@, (k) 1s also known as the expectation value E[e
@, (k)= (k)p, (k) = Logle, (k)] = Logley (k)]+ Logl¢, (k)]

ikf (x,y) ]

Now we setup explicit formula for bi-variate Gaussian to understand relations

. . 1
Logl@y, (t,,t,)] =it 1y +it,) 1, — E(O-)zctlz +2p0,0, 11, + Gétzz)

B R E
1 1 o, 0,0, X— Il
P, (x,y)= Exp|— X|x—U,,y— U, |.3 ]
o 270 Oy A1 p° 2(1-p*) vt d P b YT Hy
0,0, o )
1 1 X— ? —1,)’ 2
Py (,7) = Expl- | St TR 2P (x—uxxy—un}

270 0, +\/1— p° 2(1-p7) Oy oy xOy
Notice that if the covariance matrix 1s not full rank (rows are not indep.) then there is no PDF.
There can be confusion over random variables that are not-independent versus those that are

degenerate. Not independent does not mean degenerate.
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Linear combinations

X and Y are indep Gaussian random numbers and
Z=aX+bY,S=aX+ BY.What is the joint char. function for Z and S ?

¢ZS (tl ,tz) — ‘ eitl(ax+by)eit2((xx+ﬁy)PXY (.x,y)dXdy

quS (t1 atz) — ‘ ei(at1+oct2)xei(bt1+,3t2)yPXY (x,y)dxdy

Q,(t,,t,) = @y (at, +ot,) @, (bt + pt,)

Take the logarithm and collect the terms to get the covariance of Z, S
2 2

. . o o
Log[o,(t,.t,)]=i(at, + ot,)u, +i(bt, + Bt, );1Y-7’f(czt1 +at,)’ — %(bt1 + ft,)’

2 2
- - Oz, 1 Os 2
= Lt T U, — 7t1 - 5(2,0250205)t1f2 - 75

From this one can just pick out the powers of ¢ for the cumulants (or moments).

M, =apl,+bu, U =ogly + fu,
o.=a’c,+b’c, o;=0a’c,+ o,
_ oya0+0,bf
Pzs =
GZGS




Generalize for correlated random vars.

Let X and Y be random variables with joint Gaussian PDF.

. . 1
Logloy, (t,,t,)] =iyt +ip,t, — E(Gitf +20,, 040,11, + G?tf)

Put this in matrix form

S

Loglo,(t,,t,)]= Loglo,, (at, + at, ,bt, + Bt,)]
The result 1s better expressed 1in matrix form

a b
a f
pZSGZGS
2
GS

—

a
04

Hz
Hs

b
p

ot

a b
o p

IOXYGXGY

LetZ = aX+bY and § = aX+ BY. The characteristic function is easily made

pXYGXGY

o

transpose

-/

a
b

o
p




example

Y, and Y, are jointly Gaussian. N is an additional Gaussian r.v.
ElY, ]1=1, E[Y,]=-1, E[N]=0

{VarlY,1=4, VarlY,]=1,

1

Loglo,,(T)=iT"4 —1
0

\

. - =

- E[X] {1 11

E|Z] I 0 O
< Oy Pxz0 xO 7
\ Pxz0 x0 7 P )

p,=1/2, Var[N]1=2}
| |41 0
&—ETW 1 1 0 ;T
0 0 2
X=Y -Y,+Nand Z = Y, whatis the joint char. func. of X and Z
0
}< —1 >:{ 2
0 1
41 0[1 1
=1_01(1) 1 1 03 -10
0 0 2 1 0
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basic analysis structure and nomenclature

d d2
‘ beam . . d3

Indep parameters A={¢;} (common for all)
Source parameters § = {s; detector parameters D, ={d,, } .

Random vector for the spectrum R, = {R1 ,}

Random vector for joint distribution SIMmi | ar

R={R.R,,R,} with mean {t,.1t,.11,} parameters for

Block-wise Cavariance 1s Ot h er d et o Ct ors
S %, I, |

T X, 2, X,  whereeach X is a matrix of appropriate dimension

\ X, X 2,

We now have to understand what it means if we measure one of the R |
vectors and ask what the conditional PDF is for the others.

Imagine the neutrino spectrum is measured in D1 and we now want to
make a prediction for 2 and 3 given our understanding of the parameters.

Basically, we are seeking the conditional probability for R,and R, given R, =r,
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some basics regarding conditional probability

Let P,, (x,y) be a joint probability density function for random variables X,Y e R. ¢,, (7,,2,) 1s the joint char. func.
The marginal probability density for X is

P,(x)= j P, (x,y)dy

The characteristic equation for marginal probability density is obtained by setting the appropriate variables to 0.
O, () =0,,(,0) This can be inverted to obtain P, (x)

What is the conditional probability density for Y given X = x?
PXY (X — X,y)
Py (x)

What is the conditional expectation of Y ?

P (y)= if P, (x)>0

E[Y1X =x]= [ YRy, (5)dy

Notice that the conditional expectation for Y now becomes a random variable.

E[E[Y | X =x]]= f (f VB - (V) dy) Py (x)dx = ijXY (x,y)dxdy = E[Y]

This is the law of total expectation. similarly we can show
Var|Y|= E[Var[Y | X = x]]+ Var[E|Y | X = x]]
Total variance of Y is the sum of the "mean" variance under the condition X=x and the

variance of the conditional expection of Y.
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Let’s do this for bi-variate Gaussian

. . 1
Logley, (t,,t,)] =it +it, U, — E(O-)zftlz +20,,0,0,tt,+ Gétzz)

1 P
1 1 Oy O xOy X— Hy
P, (x,y)= Expl— X|x— Uy, y— U, |3 - ]
Y 270, 0,41 p° 2(1-p*) vt d P R y—Hy
O-XGY Gé
For marginal PDF of y
, 1
Loglo, (1,)]1= Logl@yy (0.1,)] = it, 1, — E(thzz)
= P, (y)=N(u, ,63) = #Exp[— i ‘ljy)] ... N(,) stands for normal PDF
\J2rmo, 20,
Conditional probability for X given Y =y. (I do not know any tricks to do this)
o
(x— (U + —Xp(y_ :uy)))z
P, (x,y) 1 o o ) )
Py, (x)=—> = ——F— Ekxpl- . 1= Ny +—p(y—py),05(1=p7))
XY=y PY(y) 27Z'O'X 1_p2 20_)2((1_p2) X GY Y X

.. . 0
The conditional expectation is t, +—=p(y— (L, )
O-Y

The conditional variance is ¢ (1—p”) This does not depend on y.
Special cases: The conditional expectation of x is linear with the variation of y from its mean.
If both variables have the same variance and correlation — 1 then conditional expectation

of x = u, +(y— u,) with variance — 0. But notice there 1s then no density.
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The multivariate case

Let random vector R = {R,,R, } with dimensions n and m

The means are given by the vector {{,, 1, } block-wise covariance 1s

le 212
Z21 222

U, 1 2, 2, 1
LOg[CDR({TpTz})]:i{TpTz}{ }_5{Tl sz}{ }{ }

=
mXxXn mXm

. . nxn nXm
this has sizes { }

2 Z"21 Z22 T2

By analogy Conditional expectation for R, given R, = A. These are all vectors.
The conditional expectation E[R, | R, = A]= u, + X X (A— i,)
The conditional co-variance E[R,.R |R,=A]-E[R |R,=A]"=X,,—X,3,%, This does not depend on A.

Check the dimensions. Some observations:
Knowing that R, = A shifts the mean for R, by X, X7 (A— )

¥,,%, is known to be the matrix of regression coefficients.
The covariance for R, shrinks depending on the correlation matrix.
Some care is needed here: 2,, and X,, may not be invertible if their rank 1s <n,m

We will deal with the issue of rank later. For the moment assume that they are.
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setup of the problem

Let's examine what the PDF of spectrum vector R means.
First the PDF is not related to the statistics of the events.

The spectrum R results from the process (generation of neutrinos from the source,
and subsequent interactions of those events in the detectors) governed by a set of
parameters {s,o,d}. These parameters have a covariance. We will imagine that the

parameters are independent of each others.

Each time we perform the experiment, the parameters take on some values according

to the covariance of the parameters.

The covariance of the spectra results from the uncertainty of these parameters.
In the limit that we do an infinite number of experiments, we will get variations

of spectra according to the probability density function.
In the case of a single experiment, given the outcome of the spectrum in one detector

we want the best estimate for other detector spectra. For this we need to know the

covariance of the joint PDF that results from the common set of parameters.
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example (make it all 3x3 to avoid the problem of rank)

There are 3 indep. random parameters p={a,b,c} with means {0,0,0} and variances 1, and 4,2.

1 0 0 |
S = 0 4 0
00 2

The spectrum random variables R, have 3 elements and depends on {a,b.c}.

R, has 3 elements that depend on {a,b,c}. Let's not worry about constant offsets.

I 0 O a 1 08 O a
R,=C,.p=| 04 0.1 O b R,=C,p=| 03 1 0
05 05 05 c 0 0.15 0.1 c
Since both a and b have a mean of O, R1 and R2 also have a mean of O
0.1 |
What 1s the expected mean and variance of R, if a realization of R, =r, =| 2.4
0.05

First we have to build the block-wise co-variance matrix for {R,,R,}

C
C= 1}andCT:[ClT Cg]

2

Z _ Z“11 212 _ ClzabclT ClzabCZT
YD Y c,xz,Cl CxX,Cr

Remember that the maximum rank of each diagonal block is same as the rank of X ,
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what happens when there is not enough
information in R2 ?

Let's change the previous example so that R, does not "measure” one of the parameters

1 08 0 |l a 1 08 0 | a |
R,=C,p=| 03 1 0 b |->—| 03 1 0 b
0 015 0.1 | ¢ 0 015 00 || ¢

Now the rows of C, are no longer independent and

356 35 048
2,=| 35 409 0.6 |isonlysemi-positive definite => Det[2,,]=0
048 06 0.09

A true inverse of 2,, does not exist. But we actually do not

need it. We need the pseudo-inverse defined for a matrix A in this way

A.A%* A= A.Let's not worry about how this calculation is to be done. The answer is
E[R IR, =1,]=4{252, 0.70, —-0.59}

0 0 0
Var[R IR, =r,]=| 0 0 O
0 0 05

Since there 1s no information on parameter "c" , the third element of R, has remaining variance
1
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what happens when there are more parameters than
measurements in R2 to constrain them

imagine 4 indep. random parameters p={a,b,c,d} with means {0,0,0,0} and variances 1, and 4,2.

(100 0|
2, = 8 g (2) 8 This is the normal situation in an experiment where there are parameters that are hard to constrain.
| 0 0 0 6

The spectrum random variables R, have 3 elements and depends on {a,b,c,d}.

R, has 3 elements that depend on {a,b,c,d}. Let's not worry about constant offsets.

1 0 0 0 Z 1 08 0 O Z
R, =C,p=| 04 01 0 03 R,=C,.p=| 03 1 01 O
05 05 05 0 ¢ 0 015 03 09 | €
. 4 d | = 4 d |
Since both a and b have a mean of 0, R1 and R2 also have a mean of O
01 |
What is the expected mean and variance of R, if a realization of R, =r, =| -24
0.05

First we have to build the block-wise co-variance matrix for {R,R, }

C
{ 1}andCT=[CIT c;}
C2

y_ 2 2 _ ClzabCIT ClzabczT
Z21 Z"22 CZZabClT C2Zabcg

C

In normal circumstance the rank of both diagonal matrices'should be 3.



continued on the example with 4 parameters

Calculate the matrices (they are somewhat different than before)

1

1

0

04 05

04 074 04
05 04

0.72 2.1

03 052 225

1.68 0.6

1.75

2, =

2, =

1
0.72
2.1

356
35
0.48

0.3 0
0.52 1.68
225 0.6

35 048
411 0.66

0.66 5.13

Calculate the matrix of regression coefficients.

e = Z122; —

1.29
0.524

-1.02 0.011
—0.372 0.326
0.324 0.262 0.053

Recall , = {0.1,-2.4,0.05}

Conditional expectation for E[R, | R, =r, ] =2, 1, = {2.58,0.963,-0.59}

002 -0012 010
Conditional variance Var[R, IR, =r,]=| -0.012 0.008 -0.06
0.1 —0.06 045

and so although the errors have shrunk, they are not zero.
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Continued work

Basics of bi-linear forms
Estimation of the co-variance matrix
Independence of parameters
Estimation of parameters
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